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Calculation of errors using the general 
theory of goodness of fit

Rajendran Raja
Fermilab

Phystat05, Oxford England

See physics/0509008 for further details
We introduced a likelihood ratio of the 

theoretical likelihood to “data 
likelihood” derived from data as the 
goodness of fit measure. 

Obtain general theory of gof for both 
binned and unbinned likelihood fitting.

We now use Bayes’ theorem with the new 
theory to calculate posterior densities.

Surprising result– No Bayesian prior 
needed. Frequentist formula for 
posterior density of fitted parameter.

Transformation properties of posterior 
densities
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Notation
s denotes signal. Can be multi-dimensional.

c denotes configurations and signifies data. Can be 
multi-dimensional

P(s|c) signifies the conditional probability density in s, 
given c.

P(c|s) signifies the conditional probability density in c, 
given s. i.e It defines the theoretical model-theory 
pdf which obeys the normalization condition. 

Let       denote the dataset                       
Then

is the likelihood of observing the dataset         
Likelihood Ratio

provides gof
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Bayes’ Theorem-Simple 
derivation

Define a joint 
probability 
density P(s,c) 
such that 

Then define 
projections P(c), 
P(s) such that
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Define conditional probability P(c|s) 
along line AB

Define conditional probability P(s|c) 
along line CD
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Bayes’ Theorem-Simple 
derivation

• Then 

• Generalizing to dataset  
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Data Likelihood from Data is 
Incompatible with Bayesian Prior

Define terms:- pdf of a fixed parameter s.
We define Pn(s) as the distribution of the 

maximum likelihood value s* when the 
experiment with data set with n members is 
repeated N times (ensemble) and N→∞. 
We expect Pn(s) to narrow as n →∞.

The true value of s is the maximum likelihood 
point of Pn(s). This is an assumption of 
unbiasedness in the experiment. All 
distributions of s imply a distribution of s* 

and vice versa. The true value is a number 
and does not have a distribution. The true 
value is unknown and unknowable with 
infinite precision. The function Pn(s) is also 
unknowable.

To calculate errors we assume that given a 
single dataset        , not only is the 
maximum likelihood value s* knowable, 
but there is information present on the 
distribution of s* as well-i.e errors on s* are 
computable. We call such a function
.
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Data Likelihood from Data is 
Incompatible with Bayesian Prior

• Then we can write

• Bayesian way

• Bayes statistics is incompatible with goodness of 
fit. You can use Bayes theorem to compute             
without the use of Bayseian priors-
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Error Bootstrap

• The quantity Pn(s) is the ensemble average of all the 
posterior densities                 . Its maximum 
likelihood value is the true value sT.

• We only have measurements from one member of 
the ensemble namely 

.We want to describe to the system our lack of 
knowledge of the true value. I.e. We want to say 
that it is at s1 OR it is at s2 OR it is at s3.  At each 
value of s, we hypothesize that that is the true 
value.

• The likelihood ratio LR(s) gives the goodness of fit 
at that value.

• At the true value s=sT, the joint probablilty P(s,c) is 
given by

• As  you change the value of s, the whole 
distribution Pn(s) has to move so that the true value 
is at the new value of s. I.e. Pn(sT) in Bayes’ 
equation is a constant.
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Error Bootstrap
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This is the same formula as 
frequentists use! No Bayesian prior.
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Illustrative example

• Measure a mass whose true value s is unknown with an 
apparatus whose standard error σ is known to be 5 gms. 
A single data set consists of n=100 measurements 
ci,i=1,100. Then

• Do goodness of fit using the method of unbinned 
likelihood fits. Obtain NLLR, likelihoods for each 
individual fit.

• Determine                   for each fit. Average over 
ensemble N=1000 fits to obtain a better value of Pn(s).
We reuse Bayes’ theorem to re-evaluate posteriors, since 
we know Pn(s) from the ensemble better than from 
individual measurements.

• One more iteration
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Illustrative example
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Illustrative example. Iterated 
functions
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Illustrative example

Fit to s* 
histogram

Pn(s) for n=100, 
200


